A generalization of λ-slant Toeplitz operators

Gopal Datt and Ritu Aggarwal
Department of Mathematics, PGDAV College, University of Delhi, Delhi - 110065, India.
E-mail: gopal.d.sati@gmail.com, durituaggawal@gmail.com

Abstract

We compute and study the behavior of the solutions of the equation $\lambda M_{z} X=X M_{z^{k}}$, which are referred as generalized λ-slant Toeplitz operators, for general complex number λ and $k \geq 2$.

2010 Mathematics Subject Classification. 47B35. 47B30
Keywords. Toeplitz operators, slant Toeplitz operators, compression, compact operator.

1 Introduction

Toeplitz operators on the Hardy space H^{2}, are characterized by the operator equation $U^{*} X U=X$, where U is the forward unilateral shift operator on the Hardy space H^{2}. However, Toeplitz operators on the space L^{2} are nothing but the operators in the commutant of the multiplication operator M_{z} and thus can be written as solutions to the operator equation $M_{z} X=X M_{z}$. The set $\left\{e_{n}: n \in \mathbb{Z}\right\}$, where $e_{n}(z)=z^{n}$, is the standard orthonormal basis of the Hilbert space L^{2}. Multiple papers have been published in the 1960s, 1970s, 1980s, 1990s, and the 2000s that extend and generalize the study made in the paper [4] of Brown and Halmos. For an integer $k \geq 2$, the $k^{t h}$-order slant Toeplitz operators are defined as $U_{\varphi}=W_{k} M_{\varphi}$, where M_{φ} is the Laurent operator on L^{2} induced by φ and W_{k} is an operator on L^{2} such that $W_{k}\left(e_{i}\right)=e_{i / k}$, if i is divisible by k , otherwise 0 . In [1], $k^{t h}$-order slant Toeplitz operators are characterized as the solutions of the operator equation $M_{z} X=X M_{z^{k}}, k \geq 2$.

Question imposed by Barría and Halmos [3] led to the introduction of classes such as class of λ-Toeplitz operators, λ-slant Toeplitz operators [5, 6, 8-10]. Motivated by the work of Avendaño [2] and Barría and Halmos [3], we are inspired to solve the operator equation $\lambda M_{z} X=X M_{z^{k}}$, for $\lambda \in \mathbb{C}$ and $k \geq 2$. We call the solutions of the operator equation $\lambda M_{z} X=X M_{z^{k}}$, for $\lambda \in \mathbb{C}$ and $k \geq 2$ to be "Generalized λ-slant Toeplitz operators".

In this paper, we find an explicit formula for the generalized λ-slant Toeplitz operators and also give a matrix characterization to the generalized λ-slant Toeplitz operators. We obtain some spectral properties of the generalized λ-slant Toeplitz operators, which have always been a topic of interest of many mathematicians. An attempt is also made to discuss the properties of the compression of generalized λ - slant Toeplitz operators to the Hardy space H^{2}.

2 Generalized λ-slant Toeplitz operators

λ-slant Toeplitz operators are characterized as the operators satisfying the operator equation $\lambda M_{z} X=X M_{z^{2}}$ and are discussed in [6]. Now we ask about the solutions of the equation $\lambda M_{z} X=$ $X M_{z^{k}}$, for general complex number λ and integer $k \geq 2$. Throughout this paper, we assume k is an integer satisfying $k \geq 2$. We begin with the following definition.

Definition 2.1. For $k \geq 2$ and a fixed complex number λ, an operator X on L^{2} is said to be generalized λ-slant Toeplitz operator if it is a solution of the equation $\lambda M_{z} X=X M_{z^{k}}$.

It is very interesting to obtain the following.
Theorem 2.2. If X is a solution of $\lambda M_{z} X=X M_{z^{k}},|\lambda| \neq 1$ then $X=0$.
Proof. Suppose X is a solution of the equation $\lambda M_{z} X=X M_{z^{k}},|\lambda| \neq 1$. We first consider the case $|\lambda|<1$. In this case, define an operator τ on $\mathfrak{B}\left(L^{2}\right)$ such that $\tau(X)=\lambda M_{z} X M_{\bar{z}^{k}}$. Then $\|\tau\|<1$, which implies that $(I-\tau)$ is invertible. X being solution of the equation $\lambda M_{z} X=X M_{z^{k}}$, $(I-\tau) X=0$. This gives that X is zero operator.

Now consider the case $|\lambda|>1$. In this case, we define τ as $\tau(X)=M_{\bar{z}} X M_{z^{k}}$. Now we find the invertibility of $(\lambda I-\tau)$, which provides that X is zero operator.
Q.E.D.

We now consider the case for $|\lambda|=1$ and claim the following.
Theorem 2.3. For $\lambda \in \mathbb{C}$ with $|\lambda|=1$, the operator equation $\lambda M_{z} X=X M_{z^{k}}$ admits of non-zero solutions and each non-zero solution is of the form $X=D_{\bar{\lambda}} S$, where S is a $k^{t h}$-order slant Toeplitz operator and $D_{\bar{\lambda}}$ is the composition operator on L^{2} induced by $z \mapsto \bar{\lambda} z$, i.e, $D_{\bar{\lambda}} f(z)=f(\lambda z)$ for all $f \in L^{2}$.
Proof. Suppose X is an operator of the form $D_{\bar{\lambda}} S$ for some $k^{\text {th }}$-order slant Toeplitz operator S. Since $M_{z} D_{\bar{\lambda}}=\bar{\lambda} D_{\bar{\lambda}} M_{z}$ and $M_{z} S=S M_{z^{k}}$, it is easy to verify that X satisfies $\lambda M_{z} X=X M_{z^{k}}$.

Conversely, suppose that X is an operator satisfying $\lambda M_{z} X=X M_{z^{k}}$. Then $M_{z} D_{\lambda} X=$ $D_{\lambda} X M_{z^{k}}$, which implies that $D_{\lambda} X$ is a $k^{t h}$-order slant Toeplitz operator. Therefore, $X=D_{\bar{\lambda}} S$ for some $k^{\text {th }}$-order slant Toeplitz operator S.
Q.E.D.

Since $k^{\text {th }}$-order slant Toeplitz operators are always of the form $U_{\varphi}\left(=W_{k} M_{\varphi}\right), \varphi \in L^{\infty}[1]$, hence in view of Theorem 2.3, we see that generalized λ-slant Toeplitz operator are always of the form $U_{\varphi, \lambda}=D_{\bar{\lambda}} U_{\varphi}$. If $\varphi=\sum_{n \in \mathbb{Z}} a_{n} e_{n}$ in $L^{\infty}, U_{\varphi, \lambda}$ is given by

$$
U_{\varphi, \lambda} e_{i}=\sum_{m \in \mathbb{Z}} \lambda^{m} a_{k m-i} e_{m}
$$

for each $i \in \mathbb{Z}$.
Since for $|\lambda| \neq 1$, the only generalized λ-slant Toeplitz operator is the zero operator so now onward the generalized λ-slant Toeplitz operator $U_{\varphi, \lambda}, \varphi \in L^{\infty}$, is used in reference to the solution of the equation $\lambda M_{z} X=X M_{z^{k}}$, where $|\lambda|=1$. It is clear that $\left\|U_{\varphi, \lambda}\right\| \leq\|\varphi\|_{\infty}$. For $\varphi=$ $\sum_{n \in \mathbb{Z}} a_{n} e_{n} \in L^{\infty}, \lambda \in \mathbb{C}$, the adjoint of $U_{\varphi, \lambda}$ satisfies $U_{\varphi, \lambda}^{*}=\left(D_{\bar{\lambda}} U_{\varphi}\right)^{*}=U_{\varphi}^{*} D_{\lambda}$ and for each $i, j \in \mathbb{Z}$, $\left\langle U_{\varphi, \lambda}^{*} e_{j}, e_{i}\right\rangle=\left\langle e_{j}, U_{\varphi, \lambda} e_{i}\right\rangle=\left\langle e_{j}, \sum_{m \in \mathbb{Z}} \lambda^{m} a_{k m-i} e_{m}\right\rangle=\bar{\lambda}^{j} \bar{a}_{k j-i}$. This helps us to prove the following.
Theorem 2.4. Adjoint of a non-zero generalized λ-slant Toeplitz operator is not a generalized λ-slant Toeplitz operator.

Proof. Let, if possible, $U_{\varphi, \lambda}^{*}$ be a non-zero generalized λ-slant Toeplitz operator. Then for each $i, j \in \mathbb{Z}$,

$$
\begin{aligned}
& \lambda\left\langle U_{\varphi, \lambda}^{*} e_{j}, e_{i}\right\rangle=\left\langle U_{\varphi, \lambda}^{*} e_{j+k}, e_{i+1}\right\rangle \\
& \Rightarrow \lambda \bar{\lambda}^{j} \bar{a}_{k j-i}=\bar{\lambda}^{(j+k)} \bar{a}_{k(j+k)-(i+1)} \\
& \Rightarrow \bar{a}_{k j-i}=\bar{\lambda}^{(k+1)} \bar{a}_{k(j+k)-(i+1)}
\end{aligned}
$$

This on substituting $j=0$ provides that $\bar{a}_{t}=\bar{\lambda}^{n(k+1)} \bar{a}_{n\left(k^{2}-1\right)+t}$ for each $t \in \mathbb{Z}$. Since $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, we get that $\bar{a}_{t}=0$ for each $t \in \mathbb{Z}$. As a consequence $\varphi=0$, which contradicts that $U_{\varphi, \lambda}^{*}$ is non-zero. This completes the proof.

Next we move on to calculate the norm of the generalized λ-slant Toeplitz operator $U_{\varphi, \lambda}$. For this, we first prove the following.

Lemma 2.5. Product of a generalized λ-slant Toeplitz operator and its adjoint is a Laurent operator.

Proof. For $\varphi \in L^{\infty}$, the $k^{t h}$-order slant Toeplitz operator $U_{\varphi}=W_{k} M_{\varphi}$ satisfies $U_{\varphi} U_{\varphi}{ }^{*}=M_{\psi}$, where $\psi=W_{k}\left(|\varphi|^{2}\right)=\sum_{m \in \mathbb{Z}}\left\langle\psi, e_{m}\right\rangle e_{m} \in L^{\infty}$ (see [1]). This gives $U_{\varphi, \lambda} U_{\varphi, \lambda}^{*}=D_{\bar{\lambda}} U_{\varphi} U_{\varphi}{ }^{*} D_{\lambda}=D_{\bar{\lambda}} M_{\psi} D_{\lambda}$.
Now for each $n \in \mathbb{Z}$,

$$
\begin{aligned}
D_{\bar{\lambda}} M_{\psi} D_{\lambda} e_{n} & =\bar{\lambda}^{n} D_{\bar{\lambda}} \sum_{m \in \mathbb{Z}}\left\langle\psi, e_{m}\right\rangle e_{m+n} \\
& =\left(\sum_{m \in \mathbb{Z}}\left\langle\psi, e_{m}\right\rangle \lambda^{m} e_{m}\right) e_{n} \\
& =M_{\psi_{\lambda}} e_{n}
\end{aligned}
$$

Therefore $U_{\varphi, \lambda} U_{\varphi, \lambda}^{*}$ is a Laurent operator induced by the symbol ψ_{λ} in L^{∞} given by $\psi_{\lambda}(z)=$ $\sum_{n \in \mathbb{Z}}\left\langle\psi, e_{n}\right\rangle \lambda^{n} z^{n}$.
Q.E.D.

From Lemma 2.5, we have the following.
Theorem 2.6. For $\varphi \in L^{\infty},\left\|U_{\varphi, \lambda}\right\|=\sqrt{\left\|\psi_{\lambda}\right\|_{\infty}}$, where $\psi_{\lambda}(z)=\sum_{n \in \mathbb{Z}}\left\langle\psi, e_{n}\right\rangle \lambda^{n} z^{n}, \psi=W_{k}\left(|\varphi|^{2}\right)$.
For $\varphi=\sum_{n \in \mathbb{Z}} a_{n} e_{n}$ in L^{∞}, the matrix representation of generalized λ-slant Toeplitz operator $U_{\varphi, \lambda}$ with respect to the standard orthonormal basis $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ of L^{2} is

$$
\left[\begin{array}{cccccccc}
& \vdots \\
\cdots & \lambda^{-1} a_{-k+1} & \lambda^{-1} a_{-k} & \lambda^{-1} a_{-k+1} & \lambda^{-1} a_{-k-2} & \cdots & \lambda^{-1} a_{-2 k} & \cdots \\
\ldots & a_{1} & a_{0} & a_{-1} & a_{-2} & \cdots & a_{-k} & \cdots \\
\cdots & \lambda a_{k+1} & \lambda a_{k} & \lambda a_{k-1} & \lambda a_{k-2} & \cdots & \lambda a_{0} & \cdots \\
\cdots & \lambda^{2} a_{2 k+1} & \lambda^{2} a_{2 k} & \lambda^{2} a_{2 k-1} & \lambda^{2} a_{2 k-2} & \cdots & \lambda^{2} a_{k} & \cdots \\
\cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

Operators like Toeplitz [4] and $k^{t h}$-order slant Toeplitz operators [1], are characterized in terms of their respective named matrices. In order to do the same for generalized λ-slant Toeplitz operators, we define the following notion.

Definition 2.7. For a fixed integer $k \geq 2$, a generalized λ-slant Toeplitz matrix is a two way infinite matrix $\left(a_{i j}\right)$ such that $a_{i+1, j+k}=\lambda a_{i, j}$ for $i, j \in \mathbb{Z}$.

This notion helps us to obtain the following.

Theorem 2.8. A necessary and sufficient condition for an operator S on L^{2} to be a generalized λ-slant Toeplitz operator, $|\lambda|=1$, is that its matrix (with respect to the standard orthonormal basis $\left\{e_{n}: n \in \mathbb{Z}\right\}$) is a generalized λ-slant Toeplitz matrix.

Proof. It is clear that the matrix of $U_{\varphi, \lambda}, \varphi=\sum_{n \in \mathbb{Z}} a_{n} e_{n} \in L^{\infty}$ is always a generalized λ-slant Toeplitz matrix.

Conversely, let the matrix $\left(\alpha_{i j}\right)$ of an operator S on L^{2} be a generalized λ-slant Toeplitz matrix. Then for all $i, j \in \mathbb{Z}$

$$
\lambda\left\langle S e_{j}, e_{i}\right\rangle=\lambda \alpha_{i, j}=\alpha_{i+1, j+k}=\left\langle S e_{j+k}, e_{i+1}\right\rangle=\left\langle M_{z}^{*} S M_{z^{k}} e_{j}, e_{i}\right\rangle
$$

Thus $\lambda M_{z} S e_{i}=S M_{z^{k}} e_{i}$ for each $i \in \mathbb{Z}$. Therefore $\lambda M_{z} S=S M_{z^{k}}$ and hence S is a generalized λ-slant Toeplitz operator.
Q.E.D.

It is apparent to see that the sum of two generalized λ-slant Toeplitz operators is a generalized λ-slant Toeplitz operator. However, the following properties of generalized λ-slant Toeplitz operators, which are known for $k^{t h}$-order slant Toeplitz operators (see [1]), can be proved without any extra efforts.

Proposition 2.9. Let $\lambda \in \mathbb{C}$ with $|\lambda|=1$.

1. The mapping $\varphi \mapsto U_{\varphi, \lambda}$ from L^{∞} into $\mathfrak{B}\left(L^{2}\right)$ is linear and one-one.
2. The set of all generalized λ-slant Toeplitz operators is weakly closed and hence strongly closed.
3. For an unimodular complex number $\mu, D_{\bar{\mu} \lambda} U_{\varphi, \lambda}$ is a generalized μ-slant Toeplitz operator.
4. A generalized λ-slant Toeplitz operator $U_{\varphi, \lambda}$ for $\varphi \in L^{\infty}$ is compact if and only if $\varphi=0$.
5. Let $\lambda=e^{\iota \hat{\theta}}, \hat{\theta} \in\left[0,2 \pi\left[\right.\right.$. Then $U_{\varphi, \lambda}$ is co-isometry if and only if $\left|\varphi\left(\frac{\theta}{k}\right)\right|^{2}+\left|\varphi\left(\frac{\theta+2 \pi}{k}\right)\right|^{2}+\cdots$. $+\left|\varphi\left(\frac{\theta+(k-1) 2 \pi}{k}\right)\right|^{2}=k$ for a.e. $\theta \in[0,2 \pi[$.
6. For unimodular $\varphi \in L^{\infty}, U_{\varphi, \lambda}$ is always a co-isometry.
7. A generalized λ-slant Toeplitz operator $U_{\varphi, \lambda}$ is a partial isometry if and only if $\varphi=\varphi W_{k}^{*}\left(W_{k}|\varphi|^{2}\right)$

Now we find that the only hyponormal generalized λ-slant Toeplitz operator on L^{2} is the zero operator.

Theorem 2.10. A generalized λ-slant Toeplitz operator $U_{\varphi, \lambda}$ is hyponormal if and only if $\varphi=0$.
Proof. Suppose generalized λ-slant Toeplitz operator $U_{\varphi, \lambda}$ is hyponormal. Then for all $f \in L^{2}$, $\left\|U_{\varphi, \lambda} f\right\| \geq\left\|U_{\varphi, \lambda}^{*} f\right\|$. On substituting $f=e_{0}$ in above inequality, we have $\sum_{n \in \mathbb{Z}}\left|a_{k n}\right|^{2} \geq \sum_{n \in \mathbb{Z}}\left|\bar{a}_{n}\right|^{2}$, which implies that $a_{k n-m}=0, m=1,2, \cdots, k-1$ for all $n \in \mathbb{Z}$. Now on substituting $f=e_{1}$ in the inequality, we find $\sum_{n \in \mathbb{Z}}\left|a_{k n-1}\right|^{2} \geq \sum_{n \in \mathbb{Z}}\left|\bar{a}_{k-n}\right|^{2}$, which yields that $a_{k-n}=0$ for all $n \in \mathbb{Z}$. Thus $\varphi=0$.
Converse is obvious.

We know the fact that an isometry is always hyponormal, so in view of Theorem 2.10, the set of generalized λ-slant Toeplitz operators does not contain an isometry.

Proposition 2.11. For $\varphi \in L^{\infty}, W_{k} U_{\varphi, \lambda}$ is a generalized λ-slant Toeplitz operator if and only if $\varphi=0$.

Proof. If part of the result is obvious. We prove the reverse part. For, suppose $\varphi=\sum_{n \in \mathbb{Z}} a_{n} e_{n} \in$ L^{∞} is such that $W_{k} U_{\varphi, \lambda}$ is a generalized λ-slant Toeplitz operator. Then $\lambda\left\langle W_{k} U_{\varphi, \lambda} e_{j}, e_{i}\right\rangle=$ $\left\langle W_{k} U_{\varphi, \lambda} e_{j+k}, e_{i+1}\right\rangle$, which yields that

$$
a_{k^{2} i-j}=\lambda^{k-1} a_{k^{2} i+k^{2}-j-k}
$$

for each $i, j \in \mathbb{Z}$. This helps us in concluding that for each $t \in \mathbb{Z}, a_{t}=\lambda^{n(k-1)} a_{n\left(k^{2}-k\right)-t} \rightarrow 0$ as $n \rightarrow \infty$. Therefore $\varphi=0$.
Q.E.D.

Proposition 2.11 helps us to provide a characterization for the product $U_{\psi} U_{\varphi, \lambda}$ to be a generalized λ-slant Toeplitz operator, where $U_{\psi}\left(=W_{k} M_{\psi}\right)$ is a slant Toeplitz operator and $\varphi, \psi \in L^{\infty}$.

Theorem 2.12. Let $\varphi, \psi \in L^{\infty}$. Then $U_{\psi} U_{\varphi, \lambda}$ is a generalized λ-slant Toeplitz operator if and only if $\psi\left(\bar{\lambda} z^{k}\right) \varphi(z)=0$.

Proof. Suppose $\varphi, \psi \in L^{\infty}$. Then $U_{\psi} U_{\varphi, \lambda}=W_{k} M_{\psi} D_{\bar{\lambda}} W_{k} M_{\varphi}=W_{k} D_{\bar{\lambda}} M_{\psi(\bar{\lambda} z)} W_{k} M_{\varphi}$ $=W_{k} D_{\bar{\lambda}} W_{k} M_{\psi\left(\bar{\lambda} z^{k}\right)} M_{\varphi(z)}=W_{k} U_{\psi\left(\bar{\lambda} z^{k}\right) \varphi(z), \lambda}$. On applying the lemma, we have the result. Q.E.D.

It can be easily shown that $W_{k} M_{\varphi} W_{k} M_{\psi}=W_{k} M_{\varphi \psi}$ for φ, ψ in the space generated by $\left\{e_{k n}\right.$: $n \in \mathbb{Z}\}$. This serves a great tool to show the following.

Theorem 2.13. Let $\varphi, \psi \in L^{\infty}$ be such that either φ or ψ is $h\left(z^{k}\right)$ for some $h \in L^{\infty}$. Then $U_{\varphi, \lambda} U_{\psi}=U_{\varphi \psi, \lambda}$.

Proof. Suppose $\varphi($ or $\psi)=h\left(z^{k}\right)$ for some $h \in L^{\infty}$. Then $W_{k} M_{\varphi} W_{k} M_{\psi}=W_{k} M_{\varphi \psi}$, which serves that $U_{\varphi, \lambda} U_{\psi}=D_{\bar{\lambda}} W_{k}(\varphi \psi)=D_{\bar{\lambda}} W_{k} M_{\varphi \psi}=D_{\bar{\lambda}} U_{\varphi \psi}=U_{\varphi \psi, \lambda}$. \quad Q.E.D.

As a consequence of Theorem 2.13, we see that the product of a generalized λ-slant Toeplitz operator with a $k^{t h}$-order slant Toeplitz operator induced by a symbol in the space generated by $\left\{e_{k n}: n \in \mathbb{Z}\right\}$ becomes a generalized λ-slant Toeplitz operator. However, in the next result we show that the product of a generalized λ-slant Toeplitz operator with a multiplication operator is always a generalized λ-slant Toeplitz operator.

Theorem 2.14. $M_{\varphi} U_{\psi, \lambda}$ and $U_{\psi, \lambda} M_{\varphi}$ are always generalized λ-slant Toeplitz operators for $\varphi, \psi \in$ L^{∞}. Further, $M_{\varphi} U_{\psi, \lambda}=U_{\psi, \lambda} M_{\varphi}$ if and only if $\varphi\left(\bar{\lambda} z^{k}\right) \psi(z)=\varphi(z) \psi(z), z \in \mathbb{T}$.

Proof. With little efforts, we can prove that $\lambda M_{z}\left(M_{\varphi} U_{\psi, \lambda}\right)=\left(M_{\varphi} U_{\psi, \lambda}\right) M_{z^{k}}$ and $\lambda M_{z}\left(U_{\psi, \lambda} M_{\varphi}\right)$ $=\left(U_{\psi, \lambda} M_{\varphi}\right) M_{z^{k}}$ for $\varphi, \psi \in L^{\infty}$. As a consequence, both $M_{\varphi} U_{\psi, \lambda}$ and $U_{\psi, \lambda} M_{\varphi}$ are generalized λ-slant Toeplitz operators.

Furhter, we find that $M_{\varphi(z)} U_{\psi(z), \lambda}=M_{\varphi(z)} D_{\bar{\lambda}} W_{k} M_{\psi(z)}=D_{\bar{\lambda}} M_{\varphi(\bar{\lambda} z)} \quad W_{k} M_{\psi(z)}$ $=D_{\bar{\lambda}} W_{k} M_{\varphi\left(\bar{\lambda} z^{k}\right)} M_{\psi(z)}=U_{\varphi\left(\bar{\lambda} z^{k}\right) \psi(z), \lambda}$ and $U_{\psi(z), \lambda} M_{\varphi(z)}=D_{\bar{\lambda}} W_{k} M_{\psi(z)} M_{\varphi(z)}=D_{\bar{\lambda}}^{\varphi} W_{k} M_{\psi(z) \varphi(z)}=$ $U_{\varphi(z) \psi(z), \lambda}$. Now Proposition 2.9 (1) gives the result.
Q.E.D.

On looking the $k^{\text {th }}$-order slant Toeplitz operators as generalized 1 -slant Toeplitz operators, it becomes genuine to know the product of two generalized λ-slant Toeplitz operators. In order to answer this query, we first prove the the following.

Lemma 2.15. Let $\varphi \in L^{\infty}$. Then $D_{\bar{\lambda}} W_{k} U_{\varphi, \lambda}$ is a generalized λ-slant Toeplitz operator if and only if $\varphi=0$.

Proof. We need to prove one way only. For, suppose $D_{\bar{\lambda}} W_{k} U_{\varphi, \lambda}$ is a generalized λ-slant Toeplitz operator. Then for integers i, j, we have $\lambda\left\langle D_{\bar{\lambda}} W_{k} U_{\varphi, \lambda} e_{j}, e_{i}\right\rangle=\left\langle D_{\bar{\lambda}} W_{k} U_{\varphi, \lambda} e_{j+k}, e_{i+1}\right\rangle$. This gives $\left\langle\sum_{n} \lambda^{n} a_{k n-j} e_{n}, e_{k i}\right\rangle=\left\langle\sum \lambda^{n} a_{k n-j-k} e_{n}, e_{k i+k}\right\rangle$ or $a_{k(k i)-j}=\lambda^{k} a_{k^{2}(i+1)-(j+k)}$ for each $i, j \in \mathbb{Z}$. From this, we can prove that $a_{t}=\lambda^{k n} a_{n\left(k^{2}-k\right)+t}$ for all $n \in \mathbb{Z}$. This provide that $a_{t}=0$ for all $t \in \mathbb{Z}$ and hence $\varphi=0$.

Now, we answer our query in the following form.
Theorem 2.16. The product of two generalized λ-slant Toeplitz operators is a generalized λ-slant Toeplitz operator if and only if the product is zero.

Proof. Let $\varphi, \psi \in L^{\infty}$ and $U_{\varphi, \lambda}$ and $U_{\psi, \lambda}$ be two generalized λ-slant Toeplitz operators. Now

$$
\begin{aligned}
U_{\varphi, \lambda} U_{\psi, \lambda} & =D_{\bar{\lambda}} W_{k} M_{\varphi} D_{\bar{\lambda}} W_{k} M_{\psi} \\
& =D_{\bar{\lambda}} W_{k} D_{\bar{\lambda}} M_{\varphi(\bar{\lambda} z)} W_{k} M_{\psi(z)} \\
& =D_{\bar{\lambda}} W_{k} D_{\bar{\lambda}} W_{k} M_{\varphi\left(\bar{\lambda} z^{k}\right) \psi(z)} \\
& =D_{\bar{\lambda}} W_{k} U_{\varphi\left(\bar{\lambda} z^{k}\right) \psi(z), \lambda} .
\end{aligned}
$$

Now use of Lemma 2.15 completes the proof.
Q.E.D.

An immediate information that we receive from Theorem 2.16 is that the class of generalized λ-slant Toeplitz operators neither forms an algebra nor contains any non-zero idempotent operator.

3 Spectrum of generalized λ-Slant Toeplitz operators

It is shown in Theorem 2.3 that each generalized λ-slant Toeplitz operator, $|\lambda|=1$ is induced on multiplying a generalized slant Toeplitz operator by a unitary composition operator and as a consequence there is a one-one correspondence between the class of generalized λ-slant Toeplitz operators and the class of generalized slant Toeplitz operators. We use the symbols $\sigma(A), \sigma_{p}(A)$ and $\Pi(A)$ to denote the spectrum, the point spectrum and the approximate spectrum of an operator A respectively. Motivated by the approach initiated by Ho [8], the following information without any extra efforts can be gathered along the lines of techniques used to obtain the same results in case of λ-slant Toeplitz operators in [6]. We are giving the outlines of the proof in some cases and refer [8] and [6] for details.
Theorem 3.1. If φ is invertible in L^{∞} then $\sigma_{p}\left(U_{\varphi, \lambda}\right)=\sigma_{p}\left(U_{\varphi\left(z^{k}\right), \lambda}\right)$, where $\varphi=\sum_{n \in \mathbb{Z}}\left\langle\varphi, e_{n}\right\rangle \lambda^{n} e_{n}$.
For $\varphi \in L^{\infty}, M_{\varphi}=D_{\bar{\lambda}} M_{\varphi} D_{\lambda}$ so that $M_{\varphi} D_{\bar{\lambda}} W_{k}=D_{\bar{\lambda}} M_{\varphi} W_{k}=D_{\bar{\lambda}} W_{k} M_{\varphi\left(z^{k}\right)}=D_{\bar{\lambda}} U_{\varphi\left(z^{k}\right)}=$ $U_{\varphi\left(z^{k}\right), \lambda}$, where $\varphi=\sum_{n \in \mathbb{Z}}\left\langle\varphi, e_{n}\right\rangle \lambda^{n} e_{n}$. We use this observation to obtain the following.

Theorem 3.2. For $\varphi \in L^{\infty}, \sigma\left(U_{\varphi, \lambda}\right)=\sigma\left(U_{\varphi\left(z^{k}\right), \lambda}\right)$, where $\varphi=\sum_{n \in \mathbb{Z}}\left\langle\varphi, e_{n}\right\rangle \lambda^{n} e_{n}$.
Proof. Let $\varphi \in L^{\infty}$ and $\varphi=\sum_{n \in \mathbb{Z}}\left\langle\varphi, e_{n}\right\rangle \lambda^{n} e_{n}$. Then $\sigma\left(U_{\varphi, \lambda}\right) \cup\{0\}=\sigma\left(M_{\varphi}\left(D_{\bar{\lambda}} W_{k}\right)\right) \cup\{0\}=$ $\sigma\left(U_{\varphi\left(z^{k}\right), \lambda}\right) \cup\{0\}$. As $\overline{R\left(U_{\varphi\left(z^{k}\right), \lambda}^{*}\right)}=\overline{R\left(W_{k}^{*} D_{\lambda} M_{\bar{\varphi}}\right)} \subseteq \overline{R\left(W_{k}^{*}\right)}$, which is the closed linear subspace generated by $\left\{e_{k n}: n \in \mathbb{Z}\right\}$, where $R(\cdot)$ stands for the range of the operator (\cdot). Hence $\sigma\left(U_{\varphi\left(z^{k}\right), \lambda}\right)$ contains 0 . Proof completes once we prove that $\sigma\left(U_{\varphi, \lambda}\right)$ also contains 0 . This holds trivially using Theorem 3.1 in case φ is invertible in L^{∞}. We consider the case when φ is non-invertible element of L^{∞}. In this case, we get a sequence $<\varphi_{n}>$ of invertible elements in L^{∞} satisfying $\left\|\varphi_{n}-\varphi\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. Then $\left\|\varphi_{n}-\varphi\right\|_{\infty}=\left\|\varphi_{n}-\varphi\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$, where $\varphi_{n}(z)=\varphi_{n}(\lambda z)$ and $\varphi(z)=\varphi(\lambda z)$. For each $n \in \mathbb{N}$, choose a non-zero element f_{n} in L^{2} such that $U_{\varphi_{n}, \lambda} f_{n}=0$ with $\left\|f_{n}\right\|=1$. Now $\left\|U_{\varphi, \lambda} f_{n}\right\| \leq\left\|U_{\varphi, \lambda} f_{n}-U_{\varphi_{n}, \lambda} f_{n}\right\| \leq\left\|\varphi-\varphi_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. This yields that $0 \in \Pi\left(U_{\varphi, \lambda}\right)$ and hence $0 \in \sigma\left(U_{\varphi, \lambda}\right)$. This completes the proof.
Q.E.D.

Theorem 3.3. For any invertible φ in $L^{\infty}, \sigma\left(U_{\varphi, \lambda}\right)$ contains a closed disc, where $\varphi=\sum_{n \in \mathbb{Z}}\left\langle\varphi, e_{n}\right\rangle \lambda^{n} e_{n}$.
Proof. Let P_{k} be the projection of L^{2} onto the closed span of $\left\{e_{k n}: n \in \mathbb{Z}\right\}$. Now, if μ is any non-zero complex number and φ is invertible in L^{∞} then for each $f \in L^{2}$, we have

$$
\begin{aligned}
\left(U_{\bar{\varphi}^{-1}\left(z^{k}\right), \lambda}^{*}-\mu I\right) f & =M_{\varphi^{-1}\left(z^{k}\right)} W_{k}^{*} D_{\lambda} f-\mu\left(P_{k} f \oplus\left(I-P_{k}\right) f\right) \\
& =\mu W_{k}^{*} M_{\varphi^{-1}}\left(\mu^{-1} D_{\lambda}-M_{\varphi} W_{k}\right) f \oplus\left(-\mu\left(I-P_{k}\right) f\right)
\end{aligned}
$$

Suppose that $\left(U_{\bar{\varphi}^{-1}\left(z^{k}\right), \lambda}^{*}-\mu I\right)$ is onto. Now, pick $0 \neq g_{0}$ in $\left(I-P_{k}\right)\left(L^{2}\right)$. Then we find $f \in L^{2}$ such that

$$
g_{0}=\mu W_{k}^{*} M_{\varphi^{-1}}\left(\mu^{-1} D_{\lambda}-M_{\varphi} W_{k}\right) f \oplus\left(-\mu\left(I-P_{k}\right) f\right)
$$

Since $g_{0} \in\left(I-P_{k}\right)\left(L^{2}\right)$, we have $\mu W_{k}^{*} M_{\varphi^{-1}}\left(\mu^{-1} D_{\lambda}-M_{\varphi} W_{k}\right) f=0$. This provides $\left(\mu^{-1} D_{\lambda}-\right.$ $\left.M_{\varphi} W_{k}\right) f=0$ as W_{k} is co-isometry (i.e. $\left.W_{k} W_{k}^{*}=I\right)$. Hence we have $0=\left(\mu^{-1} I-D_{\bar{\lambda}} M_{\varphi} W_{k}\right) f=$ $\left(\mu^{-1} I-D_{\bar{\lambda}} W_{k} M_{\varphi\left(z^{k}\right)}\right) f=\left(\mu^{-1} I-U_{\varphi\left(z^{k}\right), \lambda}\right) f$. This implies that $\mu^{-1} \in \sigma_{p}\left(U_{\varphi\left(z^{k}\right), \lambda}\right)$. Now $\left(U_{\bar{\varphi}}^{*}-1\left(z^{k}\right), \lambda-\mu I\right)$ is onto (in fact invertible) for each μ in the resolvent of $U_{\bar{\varphi}}^{*}{ }^{*}\left(z^{k}\right), \lambda$, , so on applying Theorem 3.1, we get that

$$
\left.\left\{\mu^{-1}: \mu \in \rho\left(U_{\bar{\varphi}^{-1}\left(z^{k}\right), \lambda}^{*}\right)\right\} \subseteq \sigma_{p}\left(U_{\varphi\left(z^{k}\right), \lambda}\right)=\sigma_{p}\left(U_{\varphi, \lambda}\right) \subseteq \sigma_{(} U_{\varphi, \lambda}\right)
$$

where $\varphi=\sum_{n \in \mathbb{Z}}\left\langle\varphi, e_{n}\right\rangle \lambda^{n} e_{n}$. As spectrum of any operator is compact it follows that $\sigma\left(U_{\varphi, \lambda}\right)$ contains a disc of eigenvalues of $U_{\varphi, \lambda}$.
Q.E.D.

Remark 3.4. We conclude with the following observation.

1. The spectrum $\sigma\left(U_{\varphi, \lambda}\right)$ of the generalized λ-slant Toeplitz operator $U_{\varphi, \lambda}$ contains a closed disc of radius is $\frac{1}{r\left(U_{\bar{\varphi}-1, \lambda}\right)}$, where $r(A)$ denotes the spectral radius of the operator A.
2. For unimodular $\varphi \in L^{\infty},\left\|U_{\varphi, \lambda}^{n}\right\|^{2}=\left\|U_{\varphi, \lambda}^{n} U_{\varphi, \lambda}^{* n}\right\|=\|I\|=1$, so that $r\left(U_{\varphi, \lambda}\right)=1$ (using Gelfand formula for spectral radius). Hence, if $|\varphi|=1$, then $\sigma\left(U_{\psi, \lambda}\right)=\overline{\mathbb{D}}$, the closed unit disc.

4 Compressions of generalized λ-slant Toeplitz operators

We denote the compression of a generalized λ-slant Toeplitz operator $U_{\varphi, \lambda}, \varphi \in L^{\infty},|\lambda|=1$ to H^{2} by $V_{\varphi, \lambda}$ or simply by V if there is no confusion about the symbol φ. Then by the definition of compression, we have $V_{\varphi, \lambda}=\left.P U_{\varphi, \lambda}\right|_{H^{2}}$, that is, $V_{\varphi, \lambda} P=P U_{\varphi, \lambda} P$, where P is the orthogonal projection of L^{2} onto H^{2}. As $U_{\varphi, \lambda}=D_{\bar{\lambda}} U_{\varphi}$, we have $V_{\varphi, \lambda}=\left.P D_{\bar{\lambda}} U_{\varphi}\right|_{H^{2}}$, where U_{φ} denotes the $k^{t h}$-order slant Toeplitz operator. Since $P D_{\bar{\lambda}}=D_{\bar{\lambda}} P$, we further have $V_{\varphi, \lambda}=D_{\bar{\lambda}} V_{\varphi}$, where V_{φ} is the compression of $k^{t h}$-order slant Toeplitz operator U_{φ} to H^{2}. It is straight forward to verify that $\varphi \rightarrow V_{\varphi, \lambda}$ is one-one. It is interesting to obtain the following.

Theorem 4.1. An operator V on H^{2} is the compression of a generalized λ-slant Toeplitz operator if and only if $\lambda V=U^{*} V U^{k}$, where U is the forward unilateral shift on H^{2}.

Proof. Suppose V is compression of a generalized λ-slant Toeplitz operator. Then $V=D_{\bar{\lambda}} V_{\varphi}$ for some φ in L^{∞}. Now $U^{*} V U^{k}=U^{*} D_{\bar{\lambda}} V_{\varphi} U^{k}=\lambda D_{\bar{\lambda}} U^{*} V_{\varphi} U^{k}=\lambda D_{\bar{\lambda}} V_{\varphi}=\lambda V$.

Conversely, suppose that V is an operator satisfying $\lambda V=U^{*} V U^{k}$. Then $\lambda D_{\lambda} V=D_{\lambda} U^{*} V U^{k}=$ $\lambda U^{*} D_{\lambda} V U^{k}$. Since $|\lambda|=1$, we get $D_{\lambda} V=U^{*} D_{\lambda} V U^{k}$. So $D_{\lambda} V$ is compression of a $k^{t h}-$ order slant Toeplitz operator [1]. So $D_{\lambda} V=V_{\varphi}$ for some φ in L^{∞}. Thus $V=D_{\bar{\lambda}} V_{\varphi}$ for some φ in L^{∞}. Q.E.D.

To discuss the compactness of compression of a generalized λ-slant Toeplitz operators, we first prove the following.

Lemma 4.2. Let $|\lambda|=1$ and $\varphi \in L^{\infty}$. Then we have the following:

1. $W_{k} V_{\varphi, \lambda}^{*}=D_{\lambda} T_{\psi}$, where T_{ψ} is Toeplitz operator induced by $\psi(z)=W_{k} \bar{\varphi}(\lambda z)$.
2. If $\bar{\varphi}($ or $\psi)$ is analytic then $V_{\varphi, \lambda} T_{\psi}=V_{\varphi \psi, \lambda}$.
3. If $\bar{\varphi}($ or $\bar{\psi})$ is analytic then $V_{\varphi, \lambda} V_{\psi, \lambda}^{*}$ is a Toeplitz operator.
4. If ψ is analytic then $T_{\psi} V_{\varphi, \lambda}$ is again compression of a generalized λ-slant Toeplitz operator.

Proof. Proof of (1) follows as $W_{k} V_{\varphi, \lambda}^{*}=\left.W_{k} P U_{\varphi}^{*} D_{\lambda}\right|_{H^{2}}=\left.P M_{W_{k} \bar{\varphi}} D_{\lambda}\right|_{H^{2}}=\left.D_{\lambda} P M_{W_{k} \bar{\varphi}(\lambda z)}\right|_{H^{2}}=$ $D_{\lambda} T_{\psi}$, where $\psi=W_{k} \bar{\varphi}(\lambda z)$.
Proof of (2) follows using the fact that $V_{\varphi} T_{\psi} \equiv V_{\varphi \psi}$ when either of $\bar{\varphi}$ (or ψ) is analytic [1]. A simple computation shows that if $\bar{\varphi}$ (or $\bar{\psi}$) is analytic then $V_{\varphi, \lambda} V_{\psi, \lambda}^{*}=\left.D_{\bar{\lambda}} T_{W_{k} \varphi \bar{\psi}} D_{\lambda}\right|_{H^{2}}=$ $\left.P D_{\bar{\lambda}} M_{W_{k} \bar{\varphi} \psi} D_{\lambda}\right|_{H^{2}}=\left.P M_{\xi}\right|_{H^{2}}=T_{\xi}$, where $\xi(z)=W_{k} \varphi \bar{\psi}(\lambda z)$. This completes the proof of (3). Now for (4), if ψ is analytic then $T_{\psi} V_{\varphi, \lambda}=\left.P D_{\bar{\lambda}} M_{\psi(\bar{\lambda} z)} V_{\varphi}\right|_{H^{2}}=D_{\bar{\lambda}} V_{\psi\left(\bar{\lambda} z^{k}\right) \varphi(z)}=V_{\psi\left(\bar{\lambda} z^{k}\right) \varphi(z), \lambda}$. Hence the result.
Q.E.D.

Now we see the following, which is a very common result known for various classes of operators, like, Toeplitz operators [4], slant Toeplitz operators [8].

Theorem 4.3. $V_{\varphi, \lambda}$ is compact if and only if $\varphi=0$.
Proof. Proof of one part is obvious. For the converse, suppose $\varphi(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}$ is such that $V_{\varphi, \lambda}$ is compact. By Lemma 4.2(1), $D_{\lambda} T_{\psi}$ is compact, where $\psi(z)=W_{k} \bar{\varphi}(\lambda z)$. Now D_{λ} being unitary, we have T_{ψ} is compact. Thus $W_{k} \bar{\varphi}(\lambda z)=\psi=0$. This means that $W_{k} \bar{\varphi}=0$. Therefore $\bar{a}_{-k n}=0$ for all $n \in \mathbb{Z}$.

Now we use Lemma 4.2(2) that provides the compactness of $V_{\varphi z^{m}, \lambda}$ for $m=1,2, \ldots \ldots, k-1$. As a consequence $W_{k} V_{\varphi z^{m}, \lambda}^{*}$ and hence $D_{\lambda} T_{\psi}$ is compact, where $\psi(z)=W_{k}\left(\overline{\varphi z^{m}}\right)(\lambda z)$. This implies $W_{k}\left(\overline{\varphi z^{m}}\right)=0$, which means that $\bar{a}_{-k n-m}=0$ for all $n \in \mathbb{Z}, m=1,2, \ldots \ldots, k-1$. Hence $\varphi=0$.
Q.E.D.

References

[1] S.C. Arora and R. Batra, Generalized slant Toeplitz operators on H^{2}, Math. Nachr. 278, No. 4, 347-355, 2005.
[2] R. Martínez-Avendaño, A generalization of Hankel operators, J. Func. Anal., 190, 2002, 418446.
[3] J. Barría and P.R. Halmos, Asymptotic Toeplitz operators, Trans. Amer. Math. Soc., 273, 1982, 621-630.
[4] A. Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reigne Angew. Math., 213, 1963, 89-102.
[5] G. Datt and R. Aggarwal, On some generalizaions of Toeplitz operators via operator equations, General Mathematics, Vol.21(2), 2013, 57-69.
[6] G. Datt and R. Aggarwal, A generalization of slant Toeplitz operators, To appear in Jordan Journal of Mathematics and Statistics.
[7] T. Goodman, C. Micchelli and J. Ward, Spectral radius formula for subdivision operators, Recent advances in wavelet analysis, ed. L. Schumaker and G. Webb, Academic press, 1994, 335-360.
[8] M. C. Ho, Properties of slant Toeplitz operators, Indiana University Mathematics Journal, 45, No. 3, 1996, 843-862.
[9] M. C. Ho, A criterion for finite rank λ-slant Toeplitz operators, arXiv:1404, 2700V1.
[10] C.H. Chen, P. H. Chen, M. C. Ho and M. S. Syu, λ-Toeplitz operators with analytic symbols, arXiv: $1312.2883 v i, 10$ Dec 2013.
[11] S. Sun, On the operator equation $U^{*} T U=\lambda T$, Kexue Tongbao (English ed.), 29, 1984, 298299.

